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FLOW FIELDS 
METHOD FOR TWO-DIMENSIONAL INERT HIGH-SPEED 

A. S. DAWIJS* 
College of Aeronautics. Cranfeld University, Cranfield, Bedfi,rd, U. K,  

SUMMARY 

The random choice method has now been shown to be successfully extendible from the original one-dimensional 
unsteady formulation to inert high-speed flow fields which are steady and two-dimensional using Cartesian, 
axisymmetric and Lagrangian formulations. This paper deals with the description of a new implementation of the 
random choice method formulated for natural co-ordinates based on streamlines and normals. Comparisons 
between theoretical and computed results for several different physical configurations are presented. 
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1. MTRODUCIION 

The random choice method (RCM) is based on an existence proof by Glimm' for solutions to systems 
of non-linear hyperbolic, one-dimensional, unsteady equations. Chorin2 developed it into a practical 
numerical method which was subsequently improved by C ~ l e l l a , ~  Gottlieb? Sod' and Toro6 to name 
but a few. The equations for steady, two-dimensional, supersonic flow fields are hyperbolic and are 
similar to the one-dimensional equations. This property has been used to develop the RCM for 
Cartesian and axisymmetric co-ordinate systems7 l o  and for the Lagrangian co-ordinate system.' In 
recent years the RCM has lost favour to other numerical schemes, for example schemes that 
incorporate the total variational diminishing (TVD) This is because the RCM cannot be 
successhlly applied to multidimensional  problem^.'^ However, there are two strong reasons for using 
the method which others struggle to match. Firstly, discontinuities, as shocks or contact surfaces, 
suffer tiom no numerical diffusion or oscillations. Secondly, shock waves are predicted with infinite 
resolution. 

The Euler equations are presented for the natural co-ordinate system based on streamlines and 
normals. This choice of co-ordinate space has the advantage of capturing physical boundaries exactly. 
The RCM is then described in detail. Finally, a comparison of computed and theoretical results for 
several configurations is presented. 
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2. NATURAL CO-ORDINATE FORMULATION OF THE STEADY STATE EULER 
EQUATIONS 

For regions where the flow field variables are continuous functions of position, the steady state Euler 
equations for conservation of mass, momentum and energy written in vector form are 

v * (pu) = 0, (1) 

v - (puu) + v p  = 0, (2) 

v - (puh,) = 0, (3)  

where p is the gas density, p is the gas pressure, u is the velocity vector, h, is the total specific 
enthalpy (= e -t p / p  + i q2 ) ,  q is the magnitude of u and e is the specific internal energy of the gas, 
which for an ideal polytropic gas is a function of pressure and density thus, 

where 7 is the ratio of specific heat capacities. 
The natural co-ordinate system for two-dimensional flow fields consists of streamlines ( I  and 

normal t2 (see Figure 1). A unique transformation exists between this and the Cartesian co-ordinate 
space (xI, x,) which is defined by 

The metrics are given by 

- 9 cose, (5b) a x 2  

at, 362 861 a t 2  
- ax1 = U I  COSQ, _-  a x ~  - -0, sine, 3 = D ,  sinQ, _ -  

tl 
Figure 1. Natural co-ordinate system " ' 
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where 8 is the angle between a tangent to a streamline and a reference direction and a, and a, are 
scaling factors.'* Elemental arc lengths measured along the streamlines and normals are defined in 
terms of the scaling factors and elemental changes in the respective co-ordinates. Thus increments of 
length s along a streamline and n along a normal are given by 

ds = Uldl'l, dn = ~2d52. (6 )  

Using the above definitions and noting that the velocity vector has only one component, which must 
be tangential to a streamline, equations (1H3) can be written in strong conservation law formI6 for 
the natural co-ordinate system as 

aF(u) aG(u) 
35, a52 

+-=0, 

where 

and U = ( p ,  4.p. 8, a,, ~ 7 ~ ) ~ .  The first four terms of the system (7a) represent conservation of mass, 
momentum along a streamline and normal, and energy. The last two terms are due to the co-ordinate 
transformations. The mass and energy terms can be integrated immediately to yield 

M U 2  = 4 5 2 1 9  h, = HF(52)' (8) 

where m(t2 )  and H S ( t 2 )  are the mass per unit length and total enthalpy respectively, with both 
functions remaining constant along a given streamline. 

The system (7a) together with the initial conditions 

Wd = U(0,  52)7 M5I 1 = %I 0)  (9) 

defines an initial boundary value problem (IBVP). However, it is underdetermined, as al cannot be 
calculated downstream from the present conditions. By using (7a),17 it is seen that this is a 
consequence of the streamline curvature K ,  being directly dependent on the pressure gradient normal 
to a streamline, 

Therefore, until the variation of the normal pressure gradient is known along h, the streamline 
curvature and ultimately a, cannot be determined. The last two terms in equation (10) can be 
integrated along t2 to yield an expression for ul, 

together with the boundary condition for closure, 
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For isoenergetic and irrotational flow fields, equation (1 la) can be integrated to yield’* 

g(61 ) 
61 =-. 

4 

For supersonic flows, M z 1, the system (7a) is fully hyperbolic with real eigenvalues 

(12) 

where I = d t2 /d t l ,  p = sin-‘( l /M), M = q / a  is the Mach number and a = ( yp /p ) ’ / ’  is the speed of 
sound. The Riemann invariants, which are independent of the co-ordinate system, have the form 

U ( M )  F e = J,, (13) 

where u ( M )  is the Prandtl-Meyer (PM) f~nct ionl’”~ and J ,  are constants for the characteristic 
directions. 

61 

a2 
I ,  = 0 (multiplicity two), I* = f - tan(p), 

2. I. Discontinuous solutions 

For regions where the flow field variables are discontinuous functions of position, the Euler 
equations are replaced by the Rankine-Hugoniot jump relations.” The integral equation for o1 must 
also be replaced by jump relations across the discontinuity. For contact discontinuities, 

and for oblique shock waves,” 

b l41  = 0 ,  

where [ f] =fi -fi represents the difference between values across the discontinuity. 

3. THE RANDOM CHOICE METHOD 

The (tI, e2) co-ordinate space is discretized (see Figure 2) with the t2-co-ordinate divided up, 
0 < (62)1 < ((2)2 < . . . < ( 6 2 ) N ,  into N equally spaced cells with cell centre and streamline position 
(62)J, width At2 = (c2)J+l - (t2), and boundaries (.$2)Jf1/2 = (62)J f At2. A pseudocell is introduced 
a t j  = 0, where the flow is the mirror image of the flow in the cel l j  = 1, which takes into account the 
tangential flow at the solid surface e2 = 0. For the far-field boundary, taken at t2 = 1, another 
pseudocell is added a t j  = N + 1 with transmissive flow conditions. The t,-co-ordinate is discretized 
with normal co-ordinate position (tl)l. The incremental step size A t l  = I - (I,), is controlled 
by the Courant-FriedrickLewy (CFL) stability criterion.2” The initial conditions are approximated 
by a set of piecewise constant states with values remaining constant in each cell, f i l . J ,  but changing 
discontinuously at the cell interfaces, 

where we have used the notation oL = i/i.J+l and UR = U,sj .  The system (7a) together with the initial 
conditions o(c2) corresponds locally to a Riemann problem denoted by R P ( j , j  + I ) .  
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Figure 3.  Solution of Riemann problem 
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Figure 2. Computational gnd Figure 4. Wave permutations 

The solution of an RF' is based on the similitude 

and consists of left- and right-running waves propagating outwards from the initial discontinuity at 
the cell interface (see Figure 3). The waves w, and w3 can be either an oblique shock wave or a PM 
rarefaction wave. Four permutations of these waves are possible as represented schematically in 
Figure 4. They are separated by the contact wave w2 which is coincident with the streamline direction 
e l .  The two regions downstream of the waves are uniform and will be known as the centred state or 
*-state. Since the pressure and flow angle are continuous across the contact w2, the pressure in 
the centred state p* (from which all other variables can be calculated) can be written in terms of the 
left and right states as 
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where 
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x ~ , ~  = = c#IL*,~ - @L,R, BL,R is the oblique shock wave angle in the left and right 
states, Mt,R is the Mach number in the left and right centred states, KL,R = P:,R/PL,R is the density 
ratio and qL,R = p*/pL,R is the pressure ratio. Equation (17a) cannot in general be solved analytically 
but was solved using Muller's iterative-based method.'0,'8'21 

The evolution of the flow downstream at the next spatial position (tl)i+l results from the wave 
interaction originating at the cell boundaries between adjacent cells at The position of the waves 
in each RP can be determined once the piecewise constant variation in o1 along e2 has been 
calculated from the boundary value a l b  using either equation (1 1 c) for rarefaction waves or equation 
(15) for oblique shock waves, together with equation (14) for the contact discontinuity. It should be 
pointed out that equations (1 1 c) and (1 5) are equivalent and can be written as a,q = constant. For (Ilb 

specified along the solid boundary = 0, the value of (I, in the left state, nIL, based on the boundary 
value (Ilb has the form 

[el,,,, [$IL 

For the other RPs, (I~ in the right state, glR, is used to calculate cI in the centred state, uI *, and in the 
left state, ulL, as 

For (Ilb specified along the far-field boundary t2 = 1, the value of o1 in the right skate, uIR, based on 
the boundary value (Ilb has the form 

For the other Rps, al in the left state, olL, is used to calculate o1 in the centred state, (I;, and in the 
right state, uIR, as 
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For rarefaction waves the positions (see Figure 5 )  of the leading and trailing Mach waves for the 
streamwise increment At1 are determined from 

where R,,,, S2,*,, E [-$, $1 are fiactions of he2 with respect to the position of the initial 
discontinuity (,52)j-1/2. For oblique shock waves the positions are determined from 

since QL,R = Q,+,, E [- f , i]. 
Considering the jth cell in isolation, waves propagate outwards from the interfaces with the CFL 

condition stopping them from interacting with each other. To calculate the vector of primitive 
variables (except al) downstream at the new spatial point, j ,  the interval (62) j - , /2  <t2 <(C2)J+l,2 
is sampled randomly (see Figure 6) with the sampling point defined by the co-ordinates 
((61)i+l, (t2)j-l/2 + Qi.,l Ae2). Following C ~ l e l l a , ~  we use the Van der Corput equidistributed 
pseudorandom number series to generate Qj41  E [0, 11. The solution fil+,,j is determined by the 
calculated conditions at the sampling point. 

For 0 < Qi+l < i the RP( j - 1, j) is solved with sampling in the top quadrant. Wave angles are 
measured with respect to the streamline position (t2)j-1/2 and are positive. For rarefaction waves, 
Q,+l > $2, =+ U j + l j  = uL and Q2,+1 < Qt j < Q,+l < QL the primitive 
variables are determined by solving the characteristic wave equation in (s, n) space for pressure, 

= Uc. For 

where 

and q =PIPL. For oblique shock waves, Q,+I z 52, + fi,,,., = 01, and Q,+I < QL * a,+l, = 0;. 
E? 52 

- 

J+ I 

" L  

5" 

J 

I I+ I 
I I+ I I 

Figure 5 Wave positions in Riemann problem Figure 6 Sampling region 
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For $ < R,+, < 1 the RP(j,j + 1) is solved with sampling in the bottom quadrant. Wave angles are 
measured with respect to the streamline position (62),+1L2 and are negative. For rarefaction waves, 
R1+, -- 1 i RR j C',+l.l = U R  and R,,, - 1 > Q,* + U , , , ,  = 0;. For RR < R,+, - 1 < R,* the 
primitive variables are determined by solving the characteristic wave equation in (s, n) space for 
pressure, 

where 

- 
and q :PIPR. For oblique shock waves, R,, I - 1 < RR + U,,,, = UR and R,+, - 1 > 

Once the numerical solution in (C,, t2)  space has been determined, the system (5a, b) can be used 
Rk * u,,,, = G. 
to transform it to Cartesian space (x, , x2) .  

4. RESULTS AND DISCUSSION 

In Figure 7 we have computed the flow of M = 2 past an expression angle of 10" which produces a 
PM rarefaction wave; 100 cells were used in the computation. The numerical wave positions and 
variations in pressure and density ratios through the fan for the streamline t2 = 0.1 15 are in excellent 
agreement with the analytical solution. In Figure 8 the expansion angle was increased to 30". The 
computed wave positions and variations in pressure and density ratios through the fan for the 
streamline t2 = 0.045 are again in excellent agreement. 

X cmrdinatr 

Figure 7.  Companson between analytic (line) and nurnencal (symbol) solutions for PM rarefaction wave. M = 2,Hw = - 1 0  
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Figure 10. Comparison between analytic (lines) and numerical (symbols) wave positions for supersonic flow over a double 

wedge. M = 7.4.0, = 8", 0, = 19" 

(rarefaction of shock) are generated. The strength and type of the latter are determined from the 
intersection of the shock p 0 1 a r s ~ ~  for the shock waves before collision together with the constraint 
that the pressure is constant across the contact. For the prescribed conditions the secondary wave is a 
rarefaction. The computed (100 cells) and analytic wave positions are presented in Figure 10 with 
good agreement between the two. 

= 10" and 8, = - 10" 
for M = 5 (see Figure 11) and M = 15 (see Figure 12) was computed using 1500 cells. The 
interaction of the incident (rarefaction) wave with the leading shock wave weakens it, with secondary 
(reflected) waves (rarefaction or shock) being generated.23 These travel downwards, away From the 
point of interaction. A reflection c ~ e f f i c i e n t ~ ~ ' ~ ~  R, based on the ratio of the pressure difference across 
the reflected and incident waves can be defined. For positive values the reflected and incident waves 
are of the same type. For negative R, the reflected wave type is opposite to the incident wave. The 
variation in R, with flow deflection angle for y = 1.4 has been calculated for several different Mach 
numbers and is presented in Figure 13. For the initial flow deflection 8, it is observed the R, is 
negative for both flow conditions. The analytic position of the leading shock wave was calculated 

The flow field past a half-diamond configuration with deflection angles 

xcoo~atc x roordhate 
Figure 11.  Half-diamond configuration. 0, = 10.6, = -lo", M = 5 
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x eosrdbrn Xeoordh.ts 

Figure 12. Half-diamond configuration. 0, = IOdeg, 0, = - 10deg. M = I5 

using shock expansion (SE) theory,23 which assumes that the reflected wave strengths are negligible 
compared with the incident wave strength. For M = 5 the analytic and numerical leading shock wave 
positions and pressure ratios are very nearly coincident. This is because the magnitude of R, is very 
small and SE theory is a good approximation in this instance. For M = 15 the magnitude of R, is 
much larger. Therefore the discrepancies between the analytic and numerical leading shock wave 
positions and pressure ratios are as expected, since SE theory is no longer applicable. 

Figure 13. Calculated reflection coefficeints R, for y = 1.4 
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5 .  CONCLUDING RENARKS 

Glimm’s random choice method for natural co-ordinates has been successfully applied to several 
different configurations. Computed results have shown a good accuracy, with wave positions 
captured crisply and with no numerical smearing. Complex boundaries are treated with ease, with no 
special procedures necessary. 
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